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The system of equations of nonsteady filtration of a uniform liquid in a two- 
layered medium, the first layer of which is biporous while the second is purely 
porous, is solved. The analogous problem is solved for the case of filtration 
of a suspension or a colloidal solution. 

Problems of the nonsteady filtration of uniform liquids or suspensions are of interest 
in the study of processes of transfer in various natural and aritifical nonuniform porous 
media. Such media often have a layered character, with the layers differing in a number 
of physicochemical parameters: permability, compressibility, piezoconductivity, and the char- 
acter of the porosity. In the cases when each of the layers is described bya model of a simple 
porous medium, the filtration equation is analogous to a diffusion equation, and filtration in 
multilayered media can be described by methods of diffusional kinetics [i]. 

Situations in which at least one of the layers has a complicated porous structure, when 
cracks can be taken into account in addition to pores, are of particular interest. Examples 
of such media are fissured-porous rocks [2] and anisotropic membranes used in chemical en- 
gineering for the separation of mixtures [3]. These layers can develop near the surface of 
various materials disturbed by mechanical action. 

A layer can be described mathematically by the model of a biporous medium. In the pro- 
cess of filtration in such media, mass exchange occurs between pores of different types, which 
has a considerable influence on the character of the redistribution of pore pressure in the 
system. Allowance for this exchange requires modification of the filtration equation and 
specifies the form of the boundary conditions. 

The presence of such a layer (described by the model of a biporous medium) in a multi- 
layered medium has considerable influence on the character of the pore pressure in the ordin- 
ary porous media of other layers over time intervals comparable with the characteristic times 
of transitional processes in the biporous medium. 

In the present paper we investigate the simplest model of filtration in a two-layered 
medium, one of the layers of which (the first) is described by a biporous model. The layers 
are arranged horizontally. Let the second layer, occupying the region of space x 0 & x < ~, 
be purely porous with a permeability and piezoconductivity k 2 and z2, respectively. We 
designate the liquid pressure in layer II as Pp(x, t). Then one-dimensional filtration in 
this layer is described by the usual equation of piezoconductivity [4] 

OPp OZPp. . 
- • (i) 

at ax~ 

The first layer of thickness x 0 consists of a biporous medium [2, 5], the permeable chan- 
nels of which consist of cracks (macropores) and pores. The equation of one-dimensional fil- 
tration of liquid in the pores of such a medium, as is well known [2, 5], has the form 

OP__p _ 03Pp O~Pp ( 2 ) 

Ot - n 0-~ + ~* Ox ~ ' 
where  q = ( k l / k l p ) s  2. 

The first term on the right side of gq. (2) allows for the internal flows of the filtered 
liquid between pores of poorly permeable blocks and the cracks separating blocks. Because 
of the low permeability of the porous blocks, liquid exchange between points adjacent to them 
is small compared with the flow from cracks into the blocks. 
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Thus, equalization of the pore pressures at adjacent points of a biporous medium is pos- 
sible onlythrough liquid exchange between blocks and cracks and liquid movement through 
cracks. This leads to the fact that jumps in pore pressure in such a medium are not washed 
out instantly but die out with time. 

We shall assume that the pressure at the boundary of the half-space (x = -~) is kept 
constant and equal to Pi. The pressure in the medium at the initial time is P2. The problem 
of determining Pc(X, t) and Pp(x, t) comes down to the solution of the system of equations 
(i) and (2) with the following initial and boundary conditions: 

(x, 0) = P2, Pc (x, 0) = P~; (3 )  

Pp(oO, t) = P2- (4) 

At the initial time t = 0 at the boundary of layer I at the point x = 0 there is a jump 
in pressure, equal to (PI - P2); as was shown in Refs. 2 and 5, the law of damping of jumps 
in pore pressure has an exponential character, and at the time t this jump will be (PI - 

P2) exp (-• 

Thus, the pore pressure of the liquid below the boundary is 

Pe (+0, t) = P1 + (P2 -- P1) exp (--• (5) 

Equat ion  (5) de t e rmines  the  boundary c o n d i t i o n  fo r  Eq. (2) .  The c h a r a c t e r i s t i c  de lay  t ime 
T = ~/X i is determined by the properties of the biporous medium and the viscosity of the 
liquid being filtered. 

At the point x 0 at the boundary between the layers we have the condition of equality of 
the pressures Pc(x0 - 0, t) and Pp(x 0 + 0, t) and the liquid flows. We have Pc(x0 - 0, t) = 
Pp(x o + O, t) and 

kid , OPt @ ~ OePe _) l __ ko. (OPp ~ l (6) 
• OxOt .=..-0 ~ \ ax ]l.=x0+0' 

where ~ is the viscosity of the liquid being filtered. 

To seek a solution of the system of equations (i), (2), we take 

(x, t)=P~+Uo(x, t), Pp(x, t)=P2+Up(x, t). (7) 
Converting from Uc(x, t) and Up(x, t) to their Laplace transforms 

Uc(x, s) = ; Uc(x, t)exp(--st)dt, 
o ( 8 )  

Up (x, s) = S Up(x, t )exp(--s t)dt ,  
0 

we o b t a i n  a system of equa t ions  fo r  de t e rmin ing  Uc(x, s) and Up(x, s ) :  

layer I 

d~Uc (x, s) sUc(x, s) = O, (9 )  
dx 2 • + s~l 

(P~ -- P2) • . (IO) 
go(o ,  s ) =  

s (• + sn) 
layer II 

d~Up(x, s) sUp(x, s)_ = O, 
dx 2 x 2 

up(~, s)=0, 

Uo (Xo, s) = Up, (Xo, s), 
rls k~ ( OUc (x, s) ( I  8Up(x, s) ~ 

(ii) 

(i2) 

(13) 
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Solving this system for Uc(x, s) and Up(x, s), we have 

Ue(x' s)='(P~--P~)• { e x p ( - - (  x~+sS ~1 )1/2x) + 

( ( ") ) xl/2-ctu1(x14-sl])-l/2} 
+ exp --  s II2(2Xo ~X) XII2 

~1 @ S~l 2 + a g l ( x l @ -  Sl]) - 1 / 2  

{ ((  •215215 4- s~l)-~/2 exp - - 2  s �9 ~/2xo , 
X 1 4- ~ /~  -~- a•215 4- s~1)_1/2 • 4- s~] 

Up (X, S) = 2 (el  -- P~) • 
s (• + s~) x 

/ >/ • ) Xo+ (xo--x) 
X ' . 1 / 2  12 X 

~2 q_ a•215 i+_ SI]) - l  

{ •  X 1 4- • 
2 + a • 2 1 5 2 4 7  s~l) -~ / z  

X 

(14) 

(15) 

where a : k2/k I. Equations (14) and (15) enable one to 
purely porous two-layered medium if one takes N to zero 
absence of liquid exchange between the cracks and pores 
filtration in a biporous medium coincides with the case of steady filtration in a porous 
medium, since in this case we have in mind times much longer than the characteristic delay 
time, t >> q/x1. Conversion to the inverse transforms 

s )~/~ //-~ 
•  Xo)] , 

o b t a i n  t h e  p r e s s u r e  d i s t r i b u t i o n  in  a 
in  them, which  a c t u a l l y  means t h e  
o f  t h e  b l o c k s .  The c a s e  o f  s t e a d y  

b+i =o 
Ue(x, t)=(2ni) -x ~ Uc(x, s)exp(st)ds, b--f~o 

(b>O) (16) 
b+i ,,. 

Up(X, t) = (2;d) -I S Up (X, s) exp (st) ds, 
h--ioo 

and the use of Eq. (7) yields the unknown pressure distribution in the medium under consider- 
ation. However, an inverse Laplace transformation of (14) and (15) through Eqs. (16) is only 
possible numerically in the general case. If we must establish the asymptotic behavior of 
the functions Uc(x, t) and Up(x, t) at t << ~/~i, i.e., for times less than the characteristic 
time of the transitional processes, then we obtain 

exp (--x~1-112) + exp ((x - -  2Xo) ~]--1/2) 
U c (x, t) --~ ( P x -  P~)(1 - - exp  (--xlt/~])) X 

1 4- exp(--2Xo~l -I/2) ' (17) 

Up(x, t)__ 2(P1--P~)•176 t "~ t' eric (x - -  Xo) d, ,  (18)  
rl(1 4- exp (--2Xo~1-1/2)) ~ 2( •  I/2 

where erlc(z)= 2~-I/2.i exp(--g2)dg From (17) it is seen that Uc(x, t) depends on the thick- 
z 

ness of the first layer and does not depend on the permeability or piezoconductivity of the 
second layer, i.e., for times t < q/• only the boundary between the layers is "felt." Equa- 
tions (17) and (18) were obtained in the limit of small times t << q/• but this dependence 
of Uc(x) on time is retained up totimes on the order of ~/• At large distances from x0, 
i.e., for (x -- x0)/2(• I/2 >> i, from (18) we find 

2 (Pl  --- P~) exp (--xo~ -1/2 -- (x -- xo) 2 (4• -1) •  
Up(x, t) _ (1 4- exp(--2Xo~-l/2))n '/2 (x--Xo)(4• -~/2 ~ (19)  

An investigation of filtration in the first layer using Eq. (2) is justified in the case 
when the characteristic times of the given problem are on the order of the characteristic 
delay time of the processes of pressure equalization in the biporous medium, i.e., when the 
relation x~ ~ n is satisfied. This inequality actually means that x 0 5 s I/2. More- 
over, it is necessary that the condition x 0 >> s be satisfied. 
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Thus, the condition for the problem under consideration to be well-posed is written in 

the form 

C o n s e q u e n t l y ,  in  t h e  c a s e  when x0/~  i s  a s u f f i c i e n t l y  l a r g e  f i n i t e  q u a n t i t y ,  t h e  g i v e n  problem,  
u s i n g  a boundary  c o n d i t i o n  o f  t y p e  (5)  and Eq. ( 2 ) ,  i s  w e l l - p o s e d .  

I f  x 0 ~ ~,  t h e n  from t h e  i n e q u a l i t y  o b t a i n e d  i t  f o l l o w s  t h a t  ~ § ~, so t h a t  •  + 0. 
T h e r e f o r e ,  t o  d e s c r i b e  l i q u i d  f i l t r a t i o n  in  a s e m i i n f i n i t e  f r a c t u r e d - - p o r o u s  medium one must 
use  Eq. (2)  f o r  t h e  p r e s s u r e  P~(x,  t )  in  t h e  c r a c k s  and t h e  boundary  c o n d i t i o n  f rom t h e  prob-  
lem of  f i l t r a t i o n  in  a porous  medium [2 ] .  With such  a s t a t e m e n t  of  t h e  p rob lem,  t h e  s o l u t i o n  
i s  e a s i l y  found  in  t h e  s - r e p r e s e n t a t i o n :  

~~ s)--  P~ + P 1 - - P ~  e x p ( _ l / / -  s ") X 
C S S S~ -i- Xl 

Le t  us  c o n s i d e r  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  p r e s s u r e  P~(x,  s )  f o r  s >> •  ( i . e . ,  
t << ~/~z)" We expand the solution found in a series in powers of l/s, confining ourselves 
to the first two terms of the series. Converting term by term to the inverse transforms [6], 

we obtain 

P~(x,  t)..~ P2 + (PI - -P~)exp( -x11-1 /2 )  1 + 2~la/~ . 

From this it is seen that the pressure in a semiinfinite fractured-~porous medium in the re- 
gion of small times near the boundary of the plate differs little from PI in comparison with 
the pressure in the pores of a fractured--porous medium of finite thickness (17), (7)~ 

The delay times N/• can be considerable for certain parameters of the biporous medium. 
For example, in the investigation of geological structures, which are natural biporous media, 

the delay times reach i04 sec. 

For practical purposes it is desirable to know the time dependence of the flow of liquid 
entering the first layer. This flow is proportional to the derivative of the pressure in 
the cracks and, as was shown in [5], is 

k, ( ape o + o t (2o) Q 
~ 8x • 8xSt . ~=o" 

For times t << ~/• we find the specific flow rate of the filtrate through the boundary of 
half-space from (17) and (20): 

l 
f Qdt ~ kl (P~ - -  P2)(1 - -  exp (--2x~-~/2)) t ( 2 I ) 
30 ~1/2  (I + exp(--2Xo~]-l/2)) 

In  c o n t r a s t  t o  a p u r e l y  porous  t w o - l a y e r e d  medium, where a t  s m a l l  t i m e s  

U c (x, t) ~ (P1 - -  P2) erfc x ) 
2 ( x l t )  ~/~ ' 

Up(x, t ) _ ( P l - - P ~ ) e r f c  ( X--Xo )and Q ~ . k l .  ( P , - P 2 )  
" 2(• , ~(~• i/2 ' 

i t  i s  seen  f rom ( 1 7 ) - ( 2 1 )  t h a t  t h e  p r e s e n c e  o f  a b i p o r o u s  s u r f a c e  l a y e r  l e a d s  t o  d i f f e r e n t  
time dependences of the pressure and the flow of the filtrate. If the characteristic delay 
times of the process of increase in pore pressure in the biporous medium are comparable with 
the times of experimental observation of the filtration process, than the functions obtained 
above should be used in the theoretical description of the filtration laws. 

The study of nonsteady filtration of suspensions of colloidal solutions in layered media 
is of the highest practical interest. A qualitative feature of this process consists in the 
effective decrease in the permeability of the porous medium due to the depositing on its sur- 
face of particles of the disperse phase of the solution being filtered. Particles of the 
disperse phase covering pores of the surface layer prevent the penetration of the filtrate 
into the medium. The decrease in the permeability of the porous medium is equivalent to the 
appearance of an effective time-variable flow l(t) of liquid reflected from the surface x = O. 

In reality, in the filtration of a suspension, a layer of disperse particles, the thick- 
ness of which grows with time, forms at the surface of the porous medium. A description of 
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the process of filtration of a uniform liquid in this layer within the framework of the known 
equations (of the type of the piezoconductivity equation) is difficult, since the assumptions 
that the deformation has an elastic character and there is little compressibility are not 
satisfied, generally speaking, for a layer of disperse particles. In addition, this layer 
is characterized by a porosity and permeability that vary with depth and with time, which 
also complicates the analytical investigation of the process. In the majority of cases in 
the filtration of suspensions, however, the thickness of the layer of disperse particles re- 
mains small in comparison with the characteristic size of the porous specimens under investi- 
gation, and the problem under consideration can be reduced to finding the correct boundary 
condition effectively describing the decrease in the permeability of the porous medium in 
the process of the depositing of disperse particles on its surface. 

We designate the flow incident on the boundary of the half-space as I 0 and the reflected 
flow as I(t). We assume that the flow of filtrate entering the half-space is described by 
an exponential dependence on time (which is often observed experimentally [3]): 

Io - -  I (0 = To exp ( - -~0 .  

(Below we give the calculations allowing one to obtain this time dependence of the filtrate 
flow. ) 

Thus, the problem of the filtration of a suspension or colloidal solution in a layered 
semiinfinite medium is analogous to the earlier problem of the filtration of a uniform liquid, 
but with a boundary condition different from (5): 

Ioexp( at)-- kl I OPt ~ O~Pc ) 
\ ~ + • OxOt x=+0" 

I n t e g r a t i n g  t h i s  e q u a t i o n  u n d e r  t h e  c o n d i t i o n  (SPc/SX)x=+0 = 0 a t  t = 0, we f i n a l l y  o b t a i n  
the boundary condition in the form 

OUc l ~ - -  to~ [exp(--~t)--exp(--• (22)  
Ox /x=+o kl(1 - -  g~/~l) 

where Uc(x , t) is also determined from the first of Eqs. (7). The flow I 0 is determined from 
the solution of the problem of filtration of a uniform liquid in a semiinfinite two-layered 
medium. Obviously, I 0 = Qt=0, where Q is found from Eq. (20). 

Finding the functions Pc(x, t) and Pp(x, t) in the case of the filtration of a suspension 
or a colloidal solution comes down to the solution of the system of equations (i) and (2) 
with the boundary condition (22) and the matching conditions (6). The solution of this sys- 
tem with the condition (22) is fully analogous to its solution with the condition (5), and 
we give the first term of the asymptotic expansion of Uc(x, t) in the region of small times 
t << q/W.l: 

'o~ '/2, [exp(_at)_exp(_ult/~)] [ exp(--x~ - ' /~ )  + exp( (2Xo--X)~-'/~) ] (23)  
Ur (x, t) ~_~_- kl (I - -  ~ / g l ) -  1 -- exp (--2x0~ -1/~) " 

From (23)  i t  i s  s e e n  t h a t  a d e c r e a s e  in  t h e  p e r m e a b i l i t y  o f  t h e  medium has  c o n s i d e r a b l e  
i n f l u e n c e  on t h e  p r e s s u r e  d i s t r i b u t i o n ,  p a r t i c u l a r l y  i f  ~ >> ~ l / q ,  when Uc(X, t )  ~ g x / ( ~ )  << 
1, and i t  f o l l o w s  f rom (7 )  t h a t  t h e  p r e s s u r e  in  l a y e r  I h a r d l y  i n c r e a s e s .  The f l o w  o f  f i l -  
t r a t e  in  t h i s  l a y e r ,  a s  f o l l o w s  f rom (20)  and ( 2 3 ) ,  i s  

Q (x, t) ~ I0 exp ( at) exp (--x~ -1/2) - -  exp ( - -  (2x0 ~ x) - i / 2 )  (24)  
1 - -exp( - -2x0~  -1/2) 

At x = 0, in  a c c o r d a n c e  w i t h  t h e  b o u n d a r y  c o n d i t i o n ,  f rom (24)  we o b t a i n  Q(0,  t )  = Io"  
exp (-~t). The use of this boundary condition in the treatment of the experimental results 
on the filtration of suspensions given in [7] yields good agreement between the calculated 
and experimental functions. 

For a qualitative discussion of the proposed boundary condition, let us consider the 
process of silting up (choking) of a porous medium by particles of the disperse phase of 
the suspension or colloidal solution being filtered. We shall assume that the particles do 
not penetrate into pores of the medium but form on its surface a layer characterized by a 
particle surface density n(t). (Actually, particles may penetrate into the porous medium, 
but this is expressed quantitatively only in a renormalization of the corresponding coef- 
ficients in the functions obtained below.) The variation of the permeability of the medium 
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can be estimated, knowing the time dependence of the surface density of deposited particles. 
To determine the function n(t) one must solve the problem of particle sedimentation in an 
external field [8] with allowance for processes taking place at the boundary of the half-space. 
For this purpose we consider Smolukhovskii's equation 

8p 0p _D a~p c-- (25) 
8t #x 2 8x 

Following [9], we write the boundary conditions for this problem in the form 

dfz - D (  ] n, dl \ • ) . -o  (26)  

f 8p ) (27)  ~,~ = ~p (o, t) + cp (o, 0 - D ( ~ - ~  _x=0' 

where n is the surface concentration; ~ = lim ql/T, $ = lim qe/T, while ql and q2 are the 
T+0 ~+0 

probabilities of transitions from the surface x = 0 into the solution and the reverse, respec- 
tively, in a time ~. The boundary conditions (26) and (27) have the meaning of the equations 
of material balance of the disperse phase at the surface of the porous medium. Taking the 
initial particle distribution in the medium as uniform [p(x, 0) = P0] and taking n(0) = 0, 
we use the operator method to solve (25). Converting from p(x, t) and n(t) to their Laplace 
transforms, by analogy with (8) we find the solution of (25) after simple calculations: 

o (x ,  s) = - - p o  �9 + ~ ~ - $ - j  
' S ~ - ~  S , 

po ( 2 8 )  
, f [( (__;_ c )d+  . �9 exp -- + - ~ /  2--D-- s ' 

From ( 2 6 ) - ( 2 8 )  we o b t a i n  t h e  e x p r e s s i o n  f o r  t h e  s u r f a c e  d e n s i t y  o f  d e p o s i t e d  p a r t i c l e s :  

The s e c o n d  t e r m  on t h e  r i g h t  s i d e  o f  (29)  i s  much s m a l l e r  i n  a b s o l u t e  v a l u e  t h a n  t h e  f i r s t  
f o r  t << 4D/c 2. N e g l e c t i n g  t h e  s e c o n d  t e r m  a t  s m a l l  t i m e s ,  we o b t a i n  

,~(s) - ~po ( 3 0 )  
s (~ + s) 

C o n v e r s i o n  t o  t h e  i n v e r s e  t r a n s f o r m  y i e l d s  t h e  unknown k i n e t i c s  o f  g r o w t h  o f  t h e  s u r f a c e  
density of particles at times t << 4D/c 2. From (30), by analogy with (16), we finally find 

n( t ) - -  ~Po ( 1 - - e x p ( - - ~ t ) ) .  (31)  

Assuming that the flow of filtrate I(t) reflected from the surface x = 0 of the medium 
is proportional to the particle surface density n(t) (it is assumed that a pore is completely 
stopped up by one particle [i0]), we arrive at the boundary condition (22) sought. For low 
velocities of transport of particles of the disperse phase, the characteristic time T = 4D/c 2 
exceeds the experiment time, and Eq. (31) and hence the boundary condition (22) remain valid 
in the entire range of observation times. 

NOTATION 

Pc, liquid pressure in pores of the biporous layer, N/m2; P, U, liquid pressures, N/m2; 
• piezoconductivity of the biporous medium, m2/sec; kz, klp , permeabilities of the system 
of cracks and pores, m2; N, fracturing parameter, m2; ~, average size of a porous block, m; 
I, Q, specific flows of liquid, m/sec; p, volumetric density of particles in the solution, 
kg/m3; D, diffusion of particles, m2/sec; c, velocity of transport of particles in the solu- 
tion being filtered, m/sec; x, coordinate, m; t, time, sec; s, parameter of the Laplace 
transformation, sec -~ 

1. 
2. 
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MODEL OF THERMAL DESTRUCTION OF MATERIAL SUBJECTED TO ONE-SIDED 

HEATING 

G. A. Frolov, V. V. Pasichnyi, 
Yu. V. Polezhaev, and A. V. Choba 

UDC 536.212.3:629.7.021.7 

The article presents a model of destruction establishing a correlation between the 
temperature field and the rate of destruction of the material. 

It was shown in [i, 2] that under conditions of nonsteady heating with linear entrainment 
of the material, the path traversed by the isotherm in the range of heating time x T < x < x 6 
can be calculated by the formula 

A, = K V ~  ( ] / ~ - -  V~) ,  (1) 
and its speed by the expression 

vo * -  K Y ~  (2) 
2 Y F  

According to [2], K ~ 0 even with O* = i, it can therefore be seen from (2) that the speed 
of the isotherm whose temperature is equalto the surface temperature at the instant of onset 
of linear entrainment may exceed the speed at which the surface itself moves, and that'is 
in contradiction to the generally accepted model of heating. 

However, under real conditions the destruction of the material begins before the surface 
temperature becomes established, and the temperature of the onset of linear entrainment may 
be substantially lower than its quasisteady value. For instance, linear entrainment of quartz 
glass ceramics with (~/cp) 0 ~ 3.3 kg/(m2-sec) begins approximately at 2000~ whereas the quasi- 
steady surface temperature under such conditions of heating is ~2500~ In the subsonic jet 
of an electric-arc heater ((a/Cp) 0 ~ 1.0 kg/(m2.sec)) the temperature of the onset of entrain- 
ment is 200-300~ higher, but the surface temperature attains 2800~ too [3]. 

The results of calculations [4] showed that the process of establishing the quasisteady 
rate of destruction of the surface is not determined by the nature of flow in the film of 
melt but basically by the temperature distribution inside the solid. It follows from (2) 
that the speed oft he isotherm corresponding to the temperature of the onset of entrainment 
of mass from the surface decreases from the instant Xy within the time x v in proportion to 
i/~. On t_he other hand, the rate of destruction of the surface in that period increases 
from 0 to V~. Assuming that the temperature field determines the nature of the change of 
the rate of entrainment, we represent the process in question in the form of a diagram (Fig. 
i). 
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